Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Musa Sarı, ${ }^{\text {a }}$ Sefa Durmus, ${ }^{\text {b }}$ Orhan Atakol, ${ }^{\text {b }}$ Ingrid Svoboda ${ }^{\text {c }}$ and Harmut Fuess ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Physics Education, Gazi University, Beşevler, 06500 Ankara, Turkey,
${ }^{\mathbf{b}}$ Department of Chemistry, Ankara University, Tandogan, 06100 Ankara, Turkey, and ${ }^{\text {c }}$ Strukturforschung, FB Materialwissenschaft Technische Hochschule, Darmstadt Petersen Straße 23, 64287 Darmstadt, Germany

Correspondence e-mail: msari@gef.gazi.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.017 \AA$
R factor $=0.040$
$w R$ factor $=0.100$
Data-to-parameter ratio $=10.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis $\left[\mu-N, N^{\prime}\right.$-bis(salicylidene)-1,3-propanediaminecopper(II)]diiodolead(II)

In the title compound, bis $\left[\mu-N, N^{\prime}\right.$-bis(salicylidene)-1,3-propanediamine] $-1 \kappa^{4} N, N^{\prime}, O, O^{\prime}: 3 \kappa^{2} O, O^{\prime} ; 2 \kappa^{4} N, N^{\prime}, O, O^{\prime}: 3 \kappa^{2} O, O^{\prime}-$ diiodo- $3 \kappa^{2} I$-dicopper(II)lead(II), $\quad\left[\left\{\mathrm{Cu}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right\}_{2} \mathrm{PbI}_{2}\right]$, the Pb atom is in a distorted octahedral environment coordinated by four O and two I atoms. The phenolic O atoms of the two organic ligands coordinate both Cu and Pb atoms, forming a bridge. The $\mathrm{Pb}-\mathrm{I}$ bond distances are 3.0945 (9) and 3.1831 (9) \AA, and the $\mathrm{Pb}-\mathrm{O}$ bond distances range from 2.492 (6) to 2.616 (6) \AA. The $\mathrm{Pb} \cdots \mathrm{Cu}$ bridging distances are 3.6331 (14) and 3.5662 (13) A.

Comment

Lead is environmentally significant and its solid solutions with other oxides are of great importance in a number of ferroelectric and electronic devices (Lashgari et al., 1998). The coordination sphere of Pb is mainly dominated by oxygen, generally six, seven, eight or ten in number (Virovets et al., 1993; Tahir et al., 1996; Schürman \& Huber, 1994; Lashgari et al., 1998). Sometimes Pb is coordinated by weakly bonding N (Inoue et al., 1993; García-Granda et al., 1993). In addition to the above, some $\mathrm{Cu}-\mathrm{Pb}$ heterodinuclear complexes with macrocyclic ligands have been reported recently (Guerrino et al., 1995; Yonemura et al., 1998).

We report here the crystal structure of a heterotrinuclear complex, $\left[\left\{\mathrm{Cu}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right\}_{2} \mathrm{PbI}_{2}\right]$, (I), in which the phenolic O atoms of the organic ligands coordinate both Cu and Pb atoms, forming μ_{2} bridges.

The coordination of lead(II) in (I) is in the form of a distorted octahedron comprising four O and two I atoms (Fig. 1), with $\mathrm{Pb}-\mathrm{O}$ distances of 2.492 (6), 2.603 (6), 2.607 (6) and 2.616 (6) \AA, and $\mathrm{Pb}-\mathrm{I}$ distances of 3.0945 (9) and 3.1831 (9) \AA. The $\mathrm{O}-\mathrm{Pb}-\mathrm{O}$ bond angles range from 56.7 (2) to $159.6(2)^{\circ}$. Copper(II) is four-coordinate in a highly deformed square-planar arangement, consisting of two

Received 12 March 2001
Accepted 18 April 2001 Online 26 April 2001

Figure 1
The molecular sructure and atomic labelling scheme of the title compound (ORTEP-3; Farrugia, 1997). For clarity, only one component of the disordered C 9 atom is shown; the C atom of the other component carries suffix b instead of a. The displacement ellipsoids are drawn the 50% probability level.
phenolic O and two N atoms. The four-membered rings $\mathrm{Pb}-$ $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$ and $\mathrm{Pb}-\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{O} 3$ are not entirely planar with, for example, $\mathrm{Pb}-0.158$ (2) \AA out of the plane defined by $\mathrm{O} 1, \mathrm{Cu} 1$ and O 2 , but the angle between their least-squares planes is $50.80(2)^{\circ}$. The six-membered $\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-$ $\mathrm{C} 10-\mathrm{N} 2$ chelate ring has a boat conformation in which C 9 is disordered; the atom with suffix a has occupancy 0.564 (16) and that with suffix b has an occupancy of 0.436 (16). The $\mathrm{Pb} \cdots \mathrm{Cu}$ distances [3.6331 (12) and 3.5662 (12) Å] are rather long for a direct interaction.

Experimental

A solution of N, N^{\prime}-bis(salicylidene)-1,3-propanediamine $(0.585 \mathrm{~g}$, 0.002 mol) was dissolved in 50 ml hot ethanol. Then a solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.340 \mathrm{~g}, 0.002 \mathrm{~mol})$ in 30 ml hot water and 10 ml concentrated ammonia was added to it. The green complex $\left[\mathrm{Cu}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$, which precipitated out after a few hours, was filtered off and dried in an oven at $353 \mathrm{~K} .0 .344 \mathrm{~g}(0.001 \mathrm{~mol})$ of this complex was then dissolved in 150 ml dimethylformamide (DMF) at 373 K . In another beaker, $\mathrm{PbI}_{2}(0.454 \mathrm{~g}, 0.001 \mathrm{~mol})$ and 1 g finely ground KI were heated in a mixture of 50 ml acetone and 50 ml DMF until all the PbI_{2} was dissolved $\left(\mathrm{KPbI}_{3}\right.$ formation) (Hofmann \& Rüdorff, 1966). The excess KI was filtered off and the two hot solutions were mixed and stirred and allowed to cool for 48 h . The brown crystals formed were filtered off and dried in air.

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{PbI}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=1148.71$
Triclinic, $P \overline{1}$
$a=10.516(1) \AA$
$b=11.381(2) \AA$
$c=14.558(3) \AA$
$\alpha=87.23(2)^{\circ}$
$\beta=79.73(1)^{\circ}$
$\gamma=88.54(1)^{\circ}$
$V=1712.2(5) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=2.228 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=4.1-14.3^{\circ} \\
& \mu=7.98 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Needle, brown } \\
& 0.22 \times 0.05 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4 diffract-	$R_{\text {int }}=0.026$
\quad ometer	$\theta_{\max }=26.0^{\circ}$
$\omega / 2 \theta$ scans	$h=-12 \rightarrow 1$
Absorption correction: ψ scan (Fair,	$k=-14 \rightarrow 14$
$1990)$	$l=-17 \rightarrow 17$
$\quad T_{\min }=0.626, T_{\max }=0.787$	3 standard reflections
7106 measured reflections	frequency: 120 min
6685 independent reflections	intensity decay: 3%

4611 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0651 P)^{2}\right)
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Pb}-\mathrm{O} 1$	$2.607(6)$	$\mathrm{Cu} 1-\mathrm{O} 1$	$1.938(6)$
$\mathrm{Pb}-\mathrm{O} 2$	$2.616(6)$	$\mathrm{Cu} 1-\mathrm{O} 2$	$1.924(6)$
$\mathrm{Pb}-\mathrm{O} 3$	$2.492(6)$	$\mathrm{Cu} 2-\mathrm{O} 3$	$1.924(6)$
$\mathrm{Pb}-\mathrm{O} 4$	$2.603(6)$	$\mathrm{Cu} 2-\mathrm{O} 4$	$1.926(5)$
$\mathrm{Pb}-\mathrm{I} 1$	$3.1831(9)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$1.970(9)$
$\mathrm{Pb}-\mathrm{I} 2$	$3.0945(9)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$1.985(8)$
$\mathrm{Pb}-\mathrm{Cu} 1$	$3.6331(12)$	$\mathrm{Cu} 2-\mathrm{N} 3$	$1.961(7)$
$\mathrm{Pb}-\mathrm{Cu} 2$	$3.5662(12)$	$\mathrm{Cu} 2-\mathrm{N} 4$	$1.966(7)$
$\mathrm{O} 1-\mathrm{Pb}-\mathrm{O} 2$	$56.7(2)$	$\mathrm{O} 3-\mathrm{Pb}-\mathrm{I} 1$	$142.81(14)$
$\mathrm{O} 3-\mathrm{Pb}-\mathrm{O} 4$	$59.31(18)$	$\mathrm{O} 4-\mathrm{Pb}-\mathrm{I} 1$	$91.15(14)$
$\mathrm{O} 3-\mathrm{Pb}-\mathrm{O} 1$	$101.2(2)$	$\mathrm{O} 1-\mathrm{Pb}-\mathrm{I} 1$	$103.75(16)$
$\mathrm{O} 4-\mathrm{Pb}-\mathrm{O} 1$	$159.6(2)$	$\mathrm{O} 2-\mathrm{Pb}-\mathrm{I} 1$	$96.58(15)$
$\mathrm{O} 3-\mathrm{Pb}-\mathrm{O} 2$	$74.8(2)$	$\mathrm{I} 2-\mathrm{Pb}-\mathrm{I} 1$	$109.13(3)$
$\mathrm{O} 4-\mathrm{Pb}-\mathrm{O} 2$	$108.39(19)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 1$	$80.0(3)$
$\mathrm{O} 4-\mathrm{Pb}-\mathrm{I} 2$	$93.01(15)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$91.2(3)$
$\mathrm{O} 1-\mathrm{Pb}-\mathrm{I} 2$	$95.08(15)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 2$	$91.8(3)$
$\mathrm{O} 2-\mathrm{Pb}-\mathrm{I} 2$	$146.22(14)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$97.7(4)$

H atoms were placed geometrically $(\mathrm{C}-\mathrm{H}=0.93$ and $0.97 \AA)$ based on their parent C atoms and a riding model was used for all H atoms, with $U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{C})$. The disorder of atoms C $9 a$ and C $9 b$ was refined, with occupancies of 0.564 (16) and 0.436 (16), respectively. The largest peak and deepest hole in the final difference Fourier map were located 0.90 and $0.99 \AA$ from Pb , respectively.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction: X-RED (Stoe \& Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors wish to acknowledge the financial support of the Deutscher Akademischer Austauschdienst of Germany.

References

Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
García-Granda, S., Díaz, M. R., Gómez-Beltrán, F. \& Blanco-Gomís, D. (1993). Acta Cryst. C49, 884-886.
Guerrino, P., Tamburini, S. \& Vigato, V. (1995). Coord. Chem. Rev. 139, 17243.

metal-organic papers

Hofmann, U. \& Rüdorff, W. (1966). Anorganische Chemie, 19th ed., p. 543. Braunschweig, Germany: Friedr. Vieweg and Son
Inoue, M. B., Fernando, Q., Villegas, C. A. \& Inoue, M. (1993). Acta Cryst. C49, 875-878.
Lashgari, K., Kritikos, M., Lashgari, K. \& Westin, G. (1998). Acta Cryst. C54, 1794-1797.
Schürman, M. \& Huber, F. (1994). Acta Cryst. C50, 1710-1713.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Stoe \& Cie (1996). X-RED. Stoe \& Cie, Darmstadt, Germany.
Tahir, M. N., Ülkü, D., \& Mövsümov, E. M. (1996). Acta Cryst. C52, 2436-2439. Virovets, A. V., Naumov, D. Yu, Boldyreva, E. V. \& Podberezskaya, N. V. (1993). Acta Cryst. C49, 1882-1884.

Yonemura, M., Ohba, M., Takahashi, K., Ökawa, H. \& Fenton, D. (1998) Inorg. Chim. Acta, 283, 72-79.

